38 research outputs found

    Density Ratio Estimation-based Bayesian Optimization with Semi-Supervised Learning

    Full text link
    Bayesian optimization has attracted huge attention from diverse research areas in science and engineering, since it is capable of finding a global optimum of an expensive-to-evaluate black-box function efficiently. In general, a probabilistic regression model, e.g., Gaussian processes and Bayesian neural networks, is widely used as a surrogate function to model an explicit distribution over function evaluations given an input to estimate and a training dataset. Beyond the probabilistic regression-based Bayesian optimization, density ratio estimation-based Bayesian optimization has been suggested in order to estimate a density ratio of the groups relatively close and relatively far to a global optimum. Developing this line of research further, a supervised classifier can be employed to estimate a class probability for the two groups instead of a density ratio. However, the supervised classifiers used in this strategy are prone to be overconfident for a global solution candidate. To solve this problem, we propose density ratio estimation-based Bayesian optimization with semi-supervised learning. Finally, we demonstrate the experimental results of our methods and several baseline methods in two distinct scenarios with unlabeled point sampling and a fixed-size pool.Comment: 20 pages, 14 figures, 2 table

    Generative Neural Fields by Mixtures of Neural Implicit Functions

    Full text link
    We propose a novel approach to learning the generative neural fields represented by linear combinations of implicit basis networks. Our algorithm learns basis networks in the form of implicit neural representations and their coefficients in a latent space by either conducting meta-learning or adopting auto-decoding paradigms. The proposed method easily enlarges the capacity of generative neural fields by increasing the number of basis networks while maintaining the size of a network for inference to be small through their weighted model averaging. Consequently, sampling instances using the model is efficient in terms of latency and memory footprint. Moreover, we customize denoising diffusion probabilistic model for a target task to sample latent mixture coefficients, which allows our final model to generate unseen data effectively. Experiments show that our approach achieves competitive generation performance on diverse benchmarks for images, voxel data, and NeRF scenes without sophisticated designs for specific modalities and domains

    Combinatorial Bayesian Optimization with Random Mapping Functions to Convex Polytope

    Full text link
    Bayesian optimization is a popular method for solving the problem of global optimization of an expensive-to-evaluate black-box function. It relies on a probabilistic surrogate model of the objective function, upon which an acquisition function is built to determine where next to evaluate the objective function. In general, Bayesian optimization with Gaussian process regression operates on a continuous space. When input variables are categorical or discrete, an extra care is needed. A common approach is to use one-hot encoded or Boolean representation for categorical variables which might yield a {\em combinatorial explosion} problem. In this paper we present a method for Bayesian optimization in a combinatorial space, which can operate well in a large combinatorial space. The main idea is to use a random mapping which embeds the combinatorial space into a convex polytope in a continuous space, on which all essential process is performed to determine a solution to the black-box optimization in the combinatorial space. We describe our {\em combinatorial Bayesian optimization} algorithm and present its regret analysis. Numerical experiments demonstrate that our method outperforms existing methods.Comment: 10 pages, 2 figure

    Datasets and Benchmarks for Nanophotonic Structure and Parametric Design Simulations

    Full text link
    Nanophotonic structures have versatile applications including solar cells, anti-reflective coatings, electromagnetic interference shielding, optical filters, and light emitting diodes. To design and understand these nanophotonic structures, electrodynamic simulations are essential. These simulations enable us to model electromagnetic fields over time and calculate optical properties. In this work, we introduce frameworks and benchmarks to evaluate nanophotonic structures in the context of parametric structure design problems. The benchmarks are instrumental in assessing the performance of optimization algorithms and identifying an optimal structure based on target optical properties. Moreover, we explore the impact of varying grid sizes in electrodynamic simulations, shedding light on how evaluation fidelity can be strategically leveraged in enhancing structure designs.Comment: 31 pages, 31 figures, 4 tables. Accepted at the 37th Conference on Neural Information Processing Systems (NeurIPS 2023), Datasets and Benchmarks Trac

    Distribution of magnetic domain pinning fields in GaMnAs ferromagnetic films

    Full text link
    Using the angular dependence of the planar Hall effect in GaMnAs ferromagnetic films, we were able to determine the distribution of magnetic domain pinning fields in this material. Interestingly, there is a major difference between the pinning field distribution in as-grown and in annealed films, the former showing a strikingly narrower distribution than the latter. This conspicuous difference can be attributed to the degree of non-uniformity of magnetic anisotropy in both types of films. This finding provides a better understanding of the magnetic domain landscape in GaMnAs that has been the subject of intense debate
    corecore